Insegnamento Biologia Cellulare Avanzata
6 CFU – SSD BIO/06

Corso di Laurea Magistrale
Biologia Sperimentale e Applicata
CURRICULUM SCIENZE BIOMEDICHE MOLECOLARI

 

Docente: Maria Isabel Buceta Sande de Freitas

Dip. Biologia Animale - Botta 2, Via Ferrata 9, Pian terreno, Stanza PT-89

tel. 0382-986317

fax: 0382-986406

e-mail: freitas@unipv.it

Programma

Approfondimenti sulla struttura e ruolo della membrana plasmatica nel riconoscimento tra cellule e nell’adesione cellula/cellula e cellula/matrice. Compartimentazione dinamica dei microdomini di membrana: “rafts” lipidici.
Microvescicole extracellulari (exosomi, ectosomi, ecc.) e loro ruolo nella comunicazione cellulare
Molecole di adesione: funzione, collegamento con il citoscheletro e con la matrice extracellulare, ruolo nella trasduzione di segnali “outside-in” e “inside-out”.
Matrice extracellulare (MEC): composizione, importanza della struttura multimodulare delle (glico)proteine della MEC, dinamica della MEC (sintesi, elaborazione, degradazione con particolare attenzione alle proteasi e inibitori delle proteasi); matrichine ad effetto paracrino e juxtacrino. Esempi di matrichine con ruolo antiangiogenico. Analisi degli argomenti trattati nell’ambito dei processi di differenziamento e crescita tumorale.

Osservazione al microscopio confocale di preparati fluorocromizzati.

Il corso verrà integrato con seminari di attualità.

 

Testi raccomandati (a scelta)

 

In inglese:

Molecular Biology of the Cell. Bruce Alberts, Alexander Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, Peter Walter. Garland Pub; 6th edition (2015) ISBN: Paperback: 978-0-8153-4464-3

Molecular Cell Biology. H. Lodish, A. Berk, C.A. Kaiser, M. Krieger, A. Bretscher, H. Ploegh, A. Amon, M.P. Scott: W H Freeman & Co.; 7th edition (2013). ISBN-13: 978-1-4292-3413-9.


Traduzioni in italiano:

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: BIOLOGIA MOLECOLARE DELLA CELLULA, 5a ed. (2008), Zanichelli. ISBN 978-88-08-06451-6

G.M. COOPER - R.E. HAUSMAN: La cellula - Un Approccio Molecolare, 3a ed., Piccin, 2005. ISBN: 88-1768-0

LODISH Harvey , BERK Arnold , ZIPURSKY Lawrence , MATSUDAIRA Paul , BALTIMORE David, DARNELL James E.: BIOLOGIA MOLECOLARE DELLA CELLULA. 2a italiana condotta sulla quarta edizione americana. ISBN 8808-08901-0.

Come studiare Biologia Cellulare (e non solo) usando LIBRI DISPONIBILI DA PUBMED

http://www.ncbi.nlm.nih.gov/books/
Inserire ad esempio: Cell Biology, Biology, Immunology, Genetics, Pharmacology, Oncology

 

Lezioni

Data

Lezione/(Seminario/

Esercitazione)

Argomento
Info; Parole chiave x Google
(o altri motori di ricerca)

Ricordare la Biblioteca di Pubmed
1 1.3.2016

Presentazione del Corso

Diapositive lezione 1.

Animation: The inner life of a cell
2 2.3.2016

Importanza dei legami non-covalenti in Biologia

Importanza del gruppo laterale degli aminoacido e degli atomi coinvolti nel legame peptidico nella struttura tridimensionale delle proteine.

Diapositive legami non-covalenti e struttura proteine

Diapositive legami non-covalenti e struttura proteine 2d/pagina

Non covalent bonds
The Chemical Components of a Cell
Hydrogen bonds
Van der Waals bond
Hydrophobic effect
Surface tension
The Chemistry of Water

Water

Protein structure

Structure of protein (database Japan)

3 3.3.2016

Lipidi nelle membrane: Lipidi saturi e insaturi. Glicerofosfolipidi: tipi di code e di testa. Colesterolo: proprietà strutturale e interazione con altri lipidi e proteine. Sfingolipidi: sfingosina, ceramidi con acidi grassi idrossilati e non-idrossilati; sfingomielina; glicolipidi: introduzione.

Diapositive Lipidi di membrana: 1a parte

Diapositive lipidi membrana, 1a parte, 2D/p

Lipid

Lipids (altro sito)

Cell membranes

Cell membranes (sito didattico di Nature) [DA ENTRARE CON CREDENZIALI DI ATENEO]

Biological Membranes and the Cell Surface

Structure of the plasma membrane

Glycoforum

Glycosphingolipids

Glycosphingolipids: Structure, Localization and Metabolism

ABO blood group system

4 8.03.2016

Sfingolipidi, cont.: classi, ruolo, patologie associate alla deficitaria degradazione nei lisosmi.

Membrana plasmatica: importanza dell'asimmetria dei lipidi nei due foglietti; influenza della forma molecolare dei lipidi sullo spessore e curvatura delle membrane. Introduzione alla versione attualizzata del modello del mosaico fluido: tipi di proteine associate alle membrane. Proteine integrali: importanza della alfa-elica e beta-foglietto per l'attraversamento della membrana. Aminoacidi dell'interfaccia lipide-ambite acquoso: "effeto "snorkeling". Proteine periferiche di membrane: introduzione.

Diapositive lezione

Diapositive lipidi membrana,2a parte (2D/p)

Biological Functions of Membrane Glycolipids

Membrane proteins

ß-barrel membrane proteins

5 9.03.2016

Membrana plasmatica, segue. Proteine periferiche. Ancore lipidiche per ancoraggio di proteine al foglietto citosolico (palmitoilazione, meristilazione, prenilazione) e per l'ancoraggio al foglietto esterno (glicosilfosfatidilinositolo, GPI). Associazione di proteine periferiche alla membrana mediata da domini di riconoscimento di lipidi o lipidi fosforilati, oppure mediate da ioni Calcio. Accenno alle proteine "scaffold".

Diapositive su proteine periferiche e proteine scaffold.

Diapositive membrana, 3a parte (2D/p)

Glicocalice: Introduzione: Glicoproteine N-linked e O-linked. Mucine. (Seminario: Regioni "Variable number of tandem repeat, VNTR" ricche di residui glicosilati nelle mucine; Alterazione delle mucine nei tumori.

Diapositive sulla 1a parte del glicocalice.

Diapositive glicocalice, 1a parte (2D/p)

Mucin

O-GalNAc Glycans

Glycosylation Changes in Cancer

Mucins on the respiratory epithelium

Mucin database

6 10.03.2016

Glicocalice, segue: Glicosamino glicani e proteoglicani. Proteoglicani della membrana plasmatica.

Diapositive sulla 2a parte del glicocalice

Diapositive glicvocalice, 2a parte (2D/p)

Introduzione ai rafts lipidici: L'evoluzione del modello del mosaico fluido negli ultimi 40 anni. Organizzazione e stabilizzazione dei componenti dei rafts.

Diapositive sulla 1a parte dei rafts

Diapositive 1a parte rafts (2 Dia/pagina)

Glycosaminoglycans

Proteoglycan

Glycoforum

Glycoforum - Glycoword

Proteoglycans and Sulfated Glycosaminoglycans

Sito con informazioni e immagini interessanti sui Proteoglicani in particolare quelli di di membrana [SERVIRA' ANCHE PER LE LEZIONI SULLA MATRICE EXTRACELLULARE].

OPEN ACCESS PAPER: Nicolson GL. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta. 2014 Jun;1838(6):1451-66.

Lipid raft

Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol. 2011

Cartoon, tratto dal filmato "The inner life of a cell", Harvard, che illustra dei rafts lipidici.

My life in a raft

The Tiniest of Life's Rafts

Kai Simons: Lipids as Organizers in Cell Membranes

7 15.03.2016

 

Rafts lipidici, cont.:Tipi di rafts, Caveolae. Ruolo degli sfingolipidi nell modellamento della forma di alcune proteine (Rafts come chaperonine). Caratteristiche dei domini tipo V3 che legano gli sfingolipidi presenti in proteine molto diversificate.Importanza dell'idrossilazione dell'acido grasso che lega la sfingosina e dell'isomero beta-galattosio per il legame specifico proteina-sfingolipide. Ruolo dei rafts nella trasduzione dei segnali.

Seminario: Proteine Src. Proteine scaffold

Diapositive 2a parte rafts e Seminari.

Diapositive 2a parte rafts e Seminari (2D/foglio)

 

Pagina del gruppo di Jacques Fantini dedicata al GalCer

Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell
Biol. 2000 Oct;1(1):31-9.

Fantini J. How sphingolipids bind and shape proteins: molecular basis of
lipid-protein interactions in lipid shells, rafts and related biomembrane
domains. Cell Mol Life Sci. 2003 Jun;60(6):1027-32.

Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013 Feb 28;4:31.

Kai Simons (MPI) Part 1: The role of lipids in organizing the cellular traffic.

Kai Simons (MPI) Part 2: Lipid rafts as a membrane organizing principle

8 16.03.2016

Seminario: RUOLO DEI RAFTS NELL’INFEZIONE PROVOCATA DA TOSSINE, VIRUS, AMILOIDE, E PRIONI

 

Diapositive del Seminario Rafts & infezione

Diapositive Rafts e Infezione (2D/foglio)

Fantini J, Garmy N, Mahfoud R, Yahi N. Lipid rafts: structure, function and role in HIV, Alzheimer's and prion diseases. Expert Rev Mol Med. 2002 Dec
20;4(27):1-22.

Fantini J, Yahi N. Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases.
Expert Rev Mol Med. 2010 Sep 1;12:e27.

Modulation of proteolytic processing of amyloid precursor protein (APP) by lipids.

Dolganiuc A. Alcohol and Viral Hepatitis: Role of Lipid Rafts. Alcohol Res. 2015;37(2):299-309.
Both alcohol abuse and infection with hepatitis viruses can lead to liver disease, including chronic hepatitis. Alcohol and hepatitis viruses have synergistic effects in the development of liver disease. Some of these involve the cellular membranes and particularly their functionally active domains, termed lipid rafts, which contain many proteins with essential roles in signaling and other processes. These lipid rafts play a central role in the lifecycles of hepatitis viruses. Alcohol's actions at the lipid rafts may contribute to the synergistic harmful effects of alcohol and hepatitis viruses on the liver and the pathogenesis of liver disease.

9 17.03.2015 Ripasso ruolo dei rafts nella trasduzione dei segnali [vedi diapositive del 15.03.2016]

Seminario: RUOLO DEI RAFTS NELL'ATTIVAZIONE DI LINFOCITI E B E DI MAST CELLS.

Diapositive Seminario Rafts & attivazione di linfociti e mast cells

Diapositive Rafts & attivazione linfociti e mast cells (2D/foglio)

Lezione: Vescicole extracellulari: Introduzione: tipi di microvescicole: ectosomi, exosomi, corpi apoptotici.

1a parte microsvescicole (2D/foglio) CORRETTA

B-cell_receptor

T-cell receptor

B-cell receptor pathway

T-cell receptor pathway

Adaptive Immunity: Specific Defenses of the Host

Libro "Immunobiology: The Immune System in Health and Disease" 5th edition.

Janeway CA Jr, Travers P, Walport M, et al., New York: Garland Science; 2001.

http://www.ncbi.nlm.nih.gov/books/NBK10757/?term=Immunobiology

Immunological synapse

The immunological synapse

Model of the role for lipid rafts in B-cell activation. (da: Pierce SK. Lipid rafts and B-cell activation. Nat Rev Immunol. 2002 Feb;2(2):96-105).

Alonso MA, Millán J. The role of lipid rafts in signalling and membrane trafficking in T lymphocytes. J Cell Sci. 2001 Nov;114(Pt 22):3957-65.

Ectosomes (Cocucci, Meldolesi, 2011)

 

ESERCITAZIONI AL CONFOCALE (FACOLTATIVE) (dott.ssa Patrizia Vaghi)

CENTRO DI SERVIZI INTERDIPARTIMENTALE 'CENTRO GRANDI STRUMENTI'
Cascina Cravino - via Bassi, 21 - 27100 Pavia - Italia

10 22.03.2016

Vescicole extracellulari, cont. Ectosomi: Biogenesi e secrezione. Stimoli per la secrezione (aumento concentrazione intracellulare di Ca). Ruolo pro-coagulante dell'esposizione di "Tissue Factor" (Fattore III della coagulazione) nelle particelle derivate da piastrine o cellule endoteliali attivate.

Exosomi, introduzione: Biogenesi. Via endocitaria, corpi multivescicolari

Diapositive: Microvescicole 2a parte (2D/foglio). CORRETTA [INCLUDE NUOVE DIAPOSITIVE SU FLIPPASI, FLOPPASI E SCRAMBLASI]

Exosomes.gene-quantification.info (Exosomes and Microvesicles (MV)
... the content and their physiological function)

Extracellular RNA Communication

11 23.03.2016

Exosomi, cont: ruolo di proteine ESCRT e tetraspanine nella formazione dei corpi multivescicolari e nella selezione dei contenuti. Contenuto differenziale di ectosomi ed exosomi. RNA nelle microvescicole.

Diapositive Microvescicole, 3a parte (2d/foglio)

L'interazione delle microvescicole con cellule bersaglio e conseguenze verranno approfondite nella prossima lezione

 

Buona Pasqua a tutti voi e alle vostre famiglie

12 30.03.2016

Microvescicole, segue: Molecole coinvolte nel riconoscimento, destino nelle cellule ricevitrici.

Diapositive : Microvescicole, 4a parte

Seminari: Ruolo delle microvescicole nel microambiente tumorale, sistema immunitario, fegato, intestino, sistema nervoso.

Diapositive seminari microvescicole

Microvesicles

Biomarkers insights. Exosomes & Microvesicles: http://biomarkerinsights.qiagen.com/category/liquid-biopsy/exosomes-microvesicles/

The science of circulating microvesicles

Extracellular vesicles

Lavori che si possono scaricare dalla rete:

1. Zhang X, Yuan X, Shi H, Wu L, Qian H, Xu W. Exosomes in cancer: small particle, big player. J Hematol Oncol. 2015 Jul 10;8:83.
Exosomes have emerged as a novel mode of intercellular communication. Exosomes can shuttle bioactive molecules including proteins, DNA, mRNA, as well as non-coding RNAs from one cell to another, leading to the exchange of genetic information and reprogramming of the recipient cells. Increasing evidence suggests that tumor cells release excessive amount of exosomes, which may influence tumor initiation, growth, progression, metastasis, and drug resistance. In addition, exosomes transfer message from tumor cells to immune cells and stromal cells, contributing to the escape from immune surveillance and the formation of tumor niche. In this review, we highlight the recent advances in the biology of exosomes as cancer communicasomes. We review the multifaceted roles of exosomes, the small secreted particles, in communicating with other cells within tumor microenvironment. Given that exosomes are cell type specific, stable, and accessible from body fluids, exosomes may provide promising biomarkers for cancer diagnosis and represent new targets for cancer therapy.

2. Basso M, Bonetto V: Extracellular Vesicles and a Novel Form of Communication in the Brain. Front Neurosci. 2016 Mar 31;10:127. doi: 10.3389/fnins.2016.00127. eCollection 2016. In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.

Disponibile in pdf: Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA Cargo Selection, Content, Release, and Uptake. Cell Mol Neurobiol. 2016 Apr 6. [Epub ahead of print]
Extracellular vesicles are a heterogeneous group of membrane-limited vesicles loaded with various proteins, lipids, and nucleic acids. Release of extracellular vesicles from its cell of origin occurs either through the outward budding of the plasma membrane or through the inward budding of the endosomal membrane, resulting in the formation of multivesicular bodies, which release vesicles upon fusion with the plasma membrane. The release of vesicles can facilitate intercellular communication by contact with or by internalization of contents, either by fusion with the plasma membrane or by endocytosis into "recipient" cells. Although the interest in extracellular vesicle research is increasing, there are still no real standards in place to separate or classify the different types of vesicles. This review provides an introduction into this expanding and complex field of research focusing on the biogenesis, nucleic acid cargo loading, content, release, and uptake of extracellular vesicles.

ALTRI LAVORI SU MICROVESCICOLE DISPONIBILI

13 31.03.2016

Molecole di adesione: Introduzione: Adesione omofilica e eterofilica. Principali famiglie: caderine, selettine, superfamiglia delle immunoglobuline e integrine. Giunzioni di membrana e molecole di adesione coinvolte nei desmosomi a cintura, desmosomi a borchia,

Diapositive introduzione adesione:

Caderine: moduli extracellulari e intracellulari; caderine classiche e non-classiche. Importanza delle proteine citoplasmatiche nel colelgamento al citoscheletro di actina o dei filamenti intermedi. Modulazione dell'adesione e trasduzione del segnale associata alle caderine. Meccanotrasduzione associata alle caderine.

Diapositive caderine

Cell adhesion molecules

Adhesion molecules

Cadherins

Cadherins (un altro sito)
Cadherin superfamily

Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006 Dec 1;20(23):3199-214.

Potential signalling pathways affected by loss of E-cadherin function.

Thinking outside the cell: how cadherins drive adhesion

 

ATTENZIONE: La "Conversione Epitelio-Mesenchimale" verrà trattato già nella prossima lezione (Martedì 5 Aprile) e non dopo le lezioni sulle molecole di adesione. Sarà seguito da un Seminario su "Struttura dei capillari sanguigni normali e tumorali. Approfondimento del ruolo della VE-caderina". Questi argomenti sono di grande importanza in Patologia e Biologia dello Sviluppo.

 

14 1.4.2016

Esercitazioni al microscopio confocale (1° e 2° turni) - Centro Grandi Strumenti - Dott.ssa Patrizia Vaghi

 

 

15 5.04.2016

Conversione Epitelio-Mesenchima e Mesenchima-Epitelio in situazioni normali e patologiche : tipi e marcatori

Diapositive EMT

Seminario: Struttura dei capillari sanguigni normali e tumorali. Ruolo della VE-caderina.

Diapositive capillari normali e tumorali

Epithelial-mesenchymal transition

Epithelium–Mesenchyme Transitions Are Crucial Morphogenetic Events Occurring During Early Development

Epithelial-Mesenchymal Transitions in Human Cancer

Kalluri R. EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009 Jun;119(6):1417-9.

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009 Jun;119(6):1420-8.

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006 Feb;7(2):131-42.

M.E. HernaŽndez-Caballero (2013). Molecular Mechanisms of Metastasis: Epithelial-Mesenchymal Transition, Anoikis and Loss of Adhesion, Carcinogenesis, Dr. Kathryn Tonissen (Ed.), ISBN: 978-953-51-0945-7, InTech, DOI: 10.5772/55399.

VE-cadherin

Molecular organization of endothelial AJs.

The role of adherens junctions and VE-cadherin in the control of vascular permeability

Adhesion in the stem cell niche: biological roles and regulation

16 6.04.2016

Molecole di adesione, segue: Selectine: Lectine [seminario], selectine (lectine di tipo C) E-, L- e P-, tipi di ligandi. Importanza dell'adesione transiente.

Diapositive selettine

Glycoforum
Lectins
Selectins
C-type lectins

Adult neural stem/precursor cells recapitulate lymphocyte-like pathways for selective homing into inflamed areas of the CNS after intravenous injection.

Beyond glycogenes

Selectin-mediated cell recognition and its structural basis

NEW. Natoni A, Macauley MS, O'Dwyer ME. Targeting Selectins and Their Ligands in
Cancer
. Front Oncol. 2016 Apr 18;6:93.

17 7.04.2016

Superfamiglia delle immunoglobuline: domini tipo immunoglobulinico (Ig-like) e domini di tipo III della fibronectina; interazioni omofiliche ed eterofiliche; ICAMs, N-CAMs, V-CAM, PECAM. Importanza dell'acido polisialico delle N-CAM durante lo sviluppo embrionale.

 

Diapositive sulle molecole di adesione della superfamiglia delle immunoglobuline

CD antigens

The Immunoglobulin Gene Superfamily

N-CAMs Mediate Ca2+-Independent Homophilic Cell-Cell Adhesion.

Neuronal cell adhesion molecules of the immunoglobulin superfamily.

I-type lectins: I-type lectins are glycan-binding proteins that belong to the immunoglobulin superfamily (IgSF), excluding antibodies and T-cell receptors.... the Siglec family of sialic acid-binding lectins is the only well-characterized group of I-type lectins, both structurally and functionally.

Proteins of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) familyPfEMP1-endothelial receptor interactions mediate microvascular bed–specific sequestration of P. falciparum Infected erythrocytes.

Disponibile in .pdf:

  1. Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology. Exp Mol Pathol. 2016 Apr 11;100(3):409-415. doi: 10.1016/j.yexmp.2016.03.012. [Epub ahead of print]
    Platelet endothelial cell adhesion molecule (PECAM-1) is highly expressed in vascular cells such as endothelial cells (ECs) and blood-borne cells like platelets and leukocytes. In ECs, this molecule controls junctional and adhesive properties. In physiological conditions, PECAM-1 supports the endothelial barrier function. In inflammation that is observed in vessels affected by atherosclerosis, the function of PECAM-1 is impaired, an event that leads to increased adhesion of neutrophils and other leukocytes to ECs, decreased vascular integrity, and higher leukocyte transmigration to the intima media. PECAM-1 has six extracellular immunoglobulin (Ig)-like domains that support attraction and adhesion of leukocytes to ECs. The cytoplasmic tail of PECAM-1 contains two tyrosine residues (Tyr-663 and Tyr-686) that could be phosphorylated by Src family protein kinases is involved in the intracellular signaling. Actually, those tyrosines are the part of the immunoreceptor tyrosine-based inhibition motifs (ITIMs) that inhibit inflammation. However, in atherosclerosis, the PECAM-1-dependent immune suppression is disturbed. This in turn facilitates recruitment of leukocytes and supports proatherogenic inflammation.
  2. Shimizu T, Kurozumi K, Ishida J, Ichikawa T., Date I. Adhesion molecules and the extracellular matrix as drug targets for glioma. Brain Tumor Pathol. 2016 Apr;33(2):97-106. doi: 10.1007/s10014-016-0261-9. Epub 2016 Mar 18.
    The formation of tumor vasculature and cell invasion along white matter tracts have pivotal roles in the development and progression of glioma. A better understanding of the mechanisms of angiogenesis and invasion in glioma will aid the development of novel therapeutic strategies. The processes of angiogenesis and invasion cause the production of an array of adhesion molecules and extracellular matrix (ECM) components. This review focuses on the role of adhesion molecules and the ECM in malignant glioma. The results of clinical trials using drugs targeted against adhesion molecules and the ECM for glioma are also discussed.

LAVORO DISCUSSO DA EDOARDO ERRICCHIELLO: “Extracellular Vesicles from Trypanosoma brucei Mediate Virulence Factor Transfer and Cause Host Anemia” Cell. 2016 Jan 14;164(1-2):246-57. doi: 10.1016/j.cell.2015.11.051. Szempruch AJ, Sykes SE, Kieft R, Dennison L, Becker AC, Gartrell A, Martin WJ, Nakayasu ES, Almeida IC, Hajduk SL, Harrington JM.
Intercellular communication between parasites and with host cells provides mechanisms for parasite development, immune evasion, and disease pathology. Bloodstream African trypanosomes produce membranous nanotubes that originate from the flagellar membrane and disassociate into free extracellular vesicles (EVs). Trypanosome EVs contain several flagellar proteins that contribute to virulence, and Trypanosoma brucei rhodesiense EVs contain the serum resistance-associated protein (SRA) necessary for human infectivity. T. b. rhodesiense EVs transfer SRA to non-human infectious trypanosomes, allowing evasion of human innate immunity. Trypanosome EVs can also fuse with mammalian erythrocytes, resulting in rapid erythrocyte clearance and anemia. These data indicate that trypanosome EVs are organelles mediating non-hereditary virulence factor transfer and causing host erythrocyte remodeling, inducing anemia.

Diapositive comunicazione Erricchiello

LAVORO DISCUSSO DA ALICE SANTONASTASO: "In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior.” Cell. 2015 May 21;161(5):1046-57. doi: 10.1016/j.cell.2015.04.042. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SI, Wurdinger T, Pegtel DM, van Rheenen J.
Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.

Diapositive comunicazione Santonastaso.

18 8.04.2016 Esercitazioni al microscopio confocale (3° e 4° turni) - Centro Grandi Strumenti - Dott.ssa Patrizia Vaghi  
19 12.04.2016

Molecole di adesion: Integrine: Introduzione: struttura eterodimerica, importanza dei domini extra- e intracellulari, funzioni, suddivisione in famiglie; in particolare in base alle subunità beta; legame con il citoscheletro di actina; attivazione.

Diapositive Integrine, 1a parte

Integrins
Beta-2 integrins (Univ of Virginia)

Arnaout MA, Mahalingam B, Xiong JP. Integrin structure, allostery, and bidirectional signaling. Annu Rev Cell Dev Biol. 2005;21:381-410.

Goswami S.: Importance of integrin receptors in the field of pharmaceutical & medical science, Advances in Biological Chemistry, 2013, 3, 224-252

20 13.04.2016

Molecole di adesione: Integrine, continuazione. Ruolo delle integrine nella trasduzione dei segnali. meccanotrasduzione nelle adesioni focali, Legame con il citoscheletro dei filamenti intermedi negli emi-desmosomi.

Diapositive integrine, 2a parte

Integrins and Signal Transduction

Disponibile in .pdf:

  • Mui KL, Chen CS, Assoian RK. The mechanical regulation of integrin-cadherin crosstalk organizes cells, signaling and forces. J Cell Sci. 2016 Feb 26. pii: jcs.183699. [Epub ahead of print]
    Cadherins and integrins are intrinsically linked through the actin cytoskeleton and share common signaling molecules. Although mechanosensing by the integrin-actin axis has long been appreciated, a growing body of literature now demonstrates that cadherins also transduce and respond to mechanical forces. Mounting evidence shows that mechanically driven crosstalk between integrins and cadherins regulates the spatial distribution of these receptors, their signaling intermediates, the actin cytoskeleton and intracellular forces. This interplay between integrins and cadherins can control fibronectin matrix assembly and signaling, and a fine balance between traction forces at focal adhesions and intercellular tension at adherens junctions is crucial for directional collective cell migration. In this Commentary, we discuss two central ideas: (1) how the dynamic interplay between integrins and cadherins regulates the spatial organization of intracellular signals and the extracellular matrix, and (2) the emerging consensus that intracellular force is a central mechanism that dictates cell behavior, guides tissue development and ultimately drives physiology.
  • Zeltz C, Gullberg D. The integrin-collagen connection - a glue for tissue repair? J Cell Sci. 2016 Feb 15;129(4):653-64.
    The a1ß1, a2ß1, a10ß1 and a11ß1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins a1ß1 and a2ß1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (a2ß1), vascular cells (a1ß1, a2ß1), epithelial cells (a1ß1, a2ß1) and fibroblasts (a1ß1, a2ß1). Integrin a10ß1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin a11ß1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events - such as wound healing - where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily - integrins a10ß1 and a11ß1.

Fibronectin and Integrin

Ingber, Donald A: https://tensegrity.wikispaces.com/Ingber,+Donald+A

The Architecture of Life (D. Ingber): A universal set of building rules seems to guide the design of organic structures—from simple
carbon compounds to complex cells and tissues

Tensegrity I. Cell structure and hierarchical systems biology (D. Ingber)

Tensegrity II. How structural networks influence cellular information processing networks

Tensegrity-Based Mechanosensing from Macro to Micro (D. Ingber)

Donald Ingber on Tensegrity Architecture and Cell Structure

Tensegrity and Complex Systems Biology

21 14.04.2016

Cascata di adesione dei leucociti: Ruolo delle integrine nell'estravasione dei leucociti dai vasi sanguigni verso i tessuti infiammati.

Diapositive estravasione dei leucociti

Introduzione alla matrice extracellulare: composizione e ruolo

Diapositive Introduzione alla matrice (solo aspetti generali)

Diapositive introduzione ai collageni

Diapositive introduzione ai proeoglicani della matrice

Diapositive introduzione glicoproteine della matrice, fattori legati alla matrice, agenti che modificano struttura e funzione MEC, recettori cellulari per la MEC

 

 

Leukocyte Extravasation with explanation

Disponibile in .pdf:

Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015 Nov;15(11):692-704. Immune responses depend on the ability of leukocytes to move from the circulation into tissue. This is enabled by mechanisms that guide leukocytes to the right exit sites and allow them to cross the barrier of the blood vessel wall. This process is regulated by a concerted action between endothelial cells and leukocytes, whereby endothelial cells activate leukocytes and direct them to extravasation sites, and leukocytes in turn instruct endothelial cells to open a path for transmigration. This Review focuses on recently described mechanisms that control and open exit routes for leukocytes through the endothelial barrier.

Extracellular matrix

Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010 Dec 15;123(Pt 24):4195-200.

Figura di Frantz: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2995612/figure/F1/

22 15.04.2016 Esercitazioni al microscopio confocale (5° turno) - Centro Grandi Strumenti - Dott.ssa Patrizia Vaghi  
23 19.04.2016

Seminario: Motivi, domini e moduli delle proteine

Matrice extracellulare, segue: Collageni: composizione, tipi, sintesi (processi intracellulari ed extracellulari). Patologie associate.

Diapositive sui collageni.

Sculture di Julian Foos: collagene e non solo

Collagen
Collagen: The Fibrous Proteins of the Matrix
O-LINKED GLYCANS IN COLLAGENS

Type IV collagen network formation
Water-Soluble Vitamins Function As Coenzymes

24 20.4.2016

Matrice extracellulare, segue: Elastina: composizione, formazione di fibrille, importanza dei legami incrociati bi- e tetrafunzionali fra le varie molecole di elastina; importanza della fibrillina
Differenze tra collagene ed elastina.

Diapositive sull'elastina

Glicosaminoglicani e proteoglicani della matrice. L'acido ialuronico (ora designato come ialuronato ("hyaluran")): un GAG evoluzionariamente molto antico e importante.Sintesi dell'ialuronato sulla membrana plasmatica (notare che non si svolge nell'apparato di Golgi come avviene per gli altri glicosaminoglicani). Eparina. Proteoglicani: struttura e funzioni. Perlecano e lamina basale.Aggrecano e cartilagine. Ruolo dei proteoglicani nell'idratazione della matrice e nei legami a proteine e peptidi biologicamente attivi.

Diapositive sui glicosaminoglicani e proteoglicani della MEC

Elastic fibers

Paganini, How The Great Violinist Was Helped By A Rare Medical Condition

Marfan's Syndrome: Michael Phelps' Blessing or Curse?

Perlecan (HSPG2 (heparan sulfate proteoglycan 2))

Secondary and tertiary structure of hyaluronan in aquous solution. Some biological consequences.

Proteoglycans
Glycosaminoglycans and Proteoglycans

Basement membrane proteogycans
Perlecan
Cartilage
Aggrecan

Olczyk P, Mencner L, Komosinska-Vassev K. Diverse Roles of Heparan Sulfate and Heparin in Wound Repair. Biomed Res Int. 2015;2015:549417.
Heparan sulfate (HS) and heparin (Hp) are linear polysaccharide chains composed of repeating (1?4) linked pyrosulfuric acid and 2-amino-2-deoxy glucopyranose (glucosamine) residue. Mentioned glycosaminoglycans chains are covalently O-linked to serine residues within the core proteins creating heparan sulfate/heparin proteoglycans (HSPG). The latter ones participate in many physiological and pathological phenomena impacting both the plethora of ligands such as cytokines, growth factors, and adhesion molecules and the variety of the ECM constituents. Moreover, HS/Hp determine the effective wound healing process. Initial growth of HS and Hp amount is pivotal during the early phase of tissue repair; however heparan sulfate and heparin also participate in further stages of tissue regeneration.

Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol. 2015 Mar;42:11-55. doi: 10.1016/j.matbio.2015.02.003. Epub 2015 Feb 18.
We provide a comprehensive classification of the proteoglycan gene families and respective protein cores. This updated nomenclature is based on three criteria: Cellular and subcellular location, overall gene/protein homology, and the utilization of specific protein modules within their respective protein cores. These three signatures were utilized to design four major classes of proteoglycans with distinct forms and functions: the intracellular, cell-surface, pericellular and extracellular proteoglycans. The proposed nomenclature encompasses forty-three distinct proteoglycan-encoding genes and many alternatively-spliced variants. The biological functions of these four proteoglycan families are critically assessed in development, cancer and angiogenesis, and in various acquired and genetic diseases where their expression is aberrant.

Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: Tools and insights for the "omics" era. Matrix Biol. 2016 Jan;49:10-24. doi: 10.1016/j.matbio.2015.06.003. Epub 2015 Jul 8

The extracellular matrix (ECM) is a fundamental component of multicellular organisms that provides mechanical and chemical cues that orchestrate cellular and tissue organization and functions. Degradation, hyperproduction or alteration of the composition of the ECM cause or accompany numerous pathologies. Thus, a better characterization of ECM composition, metabolism, and biology can lead to the identification of novel prognostic and diagnostic markers and therapeutic opportunities. The development over the last few years of high-throughput ("omics") approaches has considerably accelerated the pace of discovery in life sciences. In this review, we describe new bioinformatic tools and experimental strategies for ECM research, and illustrate how these tools and approaches can be exploited to provide novel insights in our understanding of ECM biology. We also introduce a web platform "the matrisome project" and the database MatrisomeDB that compiles in silico and in vivo data on the matrisome, defined as the ensemble of genes encoding ECM and ECM-associated proteins. Finally, we present a first draft of an ECM atlas built by compiling proteomics data on the ECM

 

25 21.04.2015

Glicoproteine della matrice: Importanza della struttura multimodulare. Fibronectina (struttura e funzione). Laminina: struttura e ruolo nella lamina basale.

Seminario: struttura, ruolo e ligandi cellulari di nidogeno/entactina, trombospondina, tenascina, fattore di von Willebrand, secreted protein acidic and rich in cysteine (SPARC) /osteopontina.

Diapositive sulle glicoproteine della matrice.

Lamina/membrana basale: componenti (laminina, collagene di tipo IV, perlecano, agrina): ruolo strutturale e modulatore dell'attività delle cellule che su di essa poggiano.

Diapositive sulla lamina basale.

Fibronectin
Fibronectin, an Extracellular Adhesion Molecule

Laminin

Lavori molto interessanti:
LeBleu VS, Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood). 2007 Oct;232(9):1121-9.

Yurchenco PD. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol. 2011 Feb 1;3(2). doi:pii: a004911. 10.1101/cshperspect.a004911.

Miner JH. Glomerular basement membrane composition and the filtration barrier. Pediatr Nephrol. 2011 Sep;26(9):1413-7.
Matsuo I, Kimura-Yoshida C. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian
embryogenesis.
Philos Trans R Soc Lond B Biol Sci. 2014. Disponibile in.pdf: Wang Y, Ni H. Fibronectin maintains the balance between hemostasis and thrombosis. Cell Mol Life Sci. 2016 Apr 21. [Epub ahead of print]

Fibronectin is a dimeric protein widely distributed in solid tissues and blood. This major extracellular matrix protein is indispensable for embryogenesis and plays crucial roles in many physiological and pathological processes. Fibronectin pre-mRNA undergoes alternative splicing to generate over 20 splicing variants, which are categorized as either plasma fibronectin (pFn) or cellular fibronectin (cFn). All fibronectin variants contain integrin binding motifs, as well as N-terminus collagen and fibrin binding motifs. With motifs that can be recognized by platelet integrins and coagulation factors, fibronectin, especially pFn, has long been suspected to be involved in hemostasis and thrombosis, but the exact function of fibronectin in these processes is controversial. The advances made using intravital microscopy models and fibronectin deficient and mutant mice have greatly facilitated the direct investigation of fibronectin function in vivo. Recent studies revealed that pFn is a vital hemostatic factor that is especially crucial for hemostasis in both genetic and anticoagulant-induced deficiencies of fibrin formation. pFn may also be an important self-limiting regulator to prevent hemorrhage as well as excessive thrombus formation and vessel occlusion. In addition to pFn, cFn is found to be prothrombotic and may contribute to thrombotic complications in various diseases. Further investigations of the role of pFn and cFn in thrombotic and hemorrhagic diseases may provide insights into development of novel therapeutic strategies (e.g., pFn transfusion) for the maintenance of the fine balance between hemostasis and thrombosis.

26 26.04.2016

Introduzione alla degradazione della matrice extracellulare.

Diapositive introduzione degradazione matrice.

Serina proteasi e loro inibitori "Serpine" Attivatori del plasminogeno di tipo urochinasi e tissutale.

Diapositive sulle serine proteasi

Seminario: Sistemi della coagulazione e fibrinolisi; sistema del complemento; sistema delle chinine: importanza della callicreina nella crescita tumorale.

Diapositive su cascata della coagulazione, fibrinolisi, chinine

Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011 Dec 1;3(12).

Serine protease

Enzyme Catalysis: The Serine Proteases

Serine proteases

Serpin

The Clotting Process Must Be Precisely Regulated

27 27.04.2016

Metalloproteasi della matrice: Ruolo dei vari domini: dominio autoinibitorio, dominio catalitico, dominio tipo emopexina. Metallo proteasi della matrice secrete oppure legate alle membrane (MT-MMPs) e loro inibitori tissutali (TIMPs). Proteine ADAMs e importanza nel rilascio di ectodomini di proteine di membrana. Proteine ADAMTs e degradazione dei proteoglicani.

Diapositive MMPs e inbitori

Murphy & Arhtur: Danger outside the cell. The extracellular matrix and diesease.

Role of Matrix Metalloproteinases in Cancer

Lavori disponibili in .pdf:

1) Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression.Nat Rev Cancer. 2002 Mar;2(3):161-74.

Matrix metalloproteinases (MMPs) have long been associated with cancer-cell invasion and metastasis. This provided the rationale for clinical trials of MMP inhibitors, unfortunately with disappointing results. We now know, however, that the MMPs have functions other than promotion of invasion, have substrates other than components of the extracellular matrix, and that they function before invasion in the development of cancer. With this knowledge in hand, can we rethink the use of MMP inhibitors in the clinic?

2) Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs.Cardiovasc Res. 2006 Feb 15;69(3):562-73.

Matrix metalloproteinases (MMPs), also called matrixins, function in the extracellular environment of cells and degrade both matrix and non-matrix proteins. They play central roles in morphogenesis, wound healing, tissue repair and remodelling in response to injury, e.g. after myocardial infarction, and in progression of diseases such as atheroma, arthritis, cancer and chronic tissue ulcers. They are multi-domain proteins and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). This review introduces the members of the MMP family and discusses their domain structure and function, proenyme activation, the mechanism of inhibition by TIMPs and their significance in physiology and pathology.

3) Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013 Sep;13(9):649-65.
Over the past 50 years, steady growth in the field of metalloproteinase biology has shown that the degradation of extracellular matrix components represents only a fraction of the functions performed by these enzymes and has highlighted their  fundamental roles in immunity. Metalloproteinases regulate aspects of immune cell development, effector function, migration and ligand-receptor interactions. They  carry out ectodomain shedding of cytokines and their cognate receptors. Together  with their endogenous inhibitors TIMPs (tissue inhibitor of metalloproteinases),  these enzymes regulate signalling downstream of the tumour necrosis factor receptor and the interleukin-6 receptor, as well as that downstream of the epidermal growth factor receptor and Notch, which are all pertinent for inflammatory responses. This Review discusses the metalloproteinase family as a crucial component in immune cell development and function.

28 28.04.2016

Seminario sui tipi di MMPs e ruolo delle MMPs nei tumori e nell'infiammazione.

Peptidi bioattivi derivati dalla degradazione della matrice: Matrichine e matricriptine. Definizione, meccanismi di formazione, effetti biologici. Agenti antiangiogenetici (endostatina, angiostatina).

Diapositive su matrichine e matricriptine

Seminario:

1. Matrichine derivate dai vari componenti della matrice.

2. Angiogenesi tumorale.

3. Altre info sull'angiogenesi tumorale e inibitori dell'angiogenesi

Lavoro disponibile in .pdf:

Antalis TM, Conway GD, Peroutka RJ, Buzza MS. Membrane-anchored proteases in endothelial cell biology. Curr Opin Hematol. 2016 May;23(3):243-52.
PURPOSE OF REVIEW: The endothelial cell plasma membrane is a metabolically active, dynamic, and fluid microenvironment where pericellular proteolysis plays a critical role. Membrane-anchored proteases may be expressed by endothelial cells as well as mural cells and leukocytes with distribution both inside and outside of the vascular system. Here, we will review the recent advances in our understanding of the direct and indirect roles of membrane-anchored proteases in vascular biology and the possible conservation of their extravascular functions in endothelial cell biology. RECENT FINDINGS: Membrane-anchored proteases belonging to the serine or metalloprotease families contain amino-terminal or carboxy-terminal domains, which serve to tether their extracellular protease domains directly at the plasma membrane. This architecture enables protease function and substrate repertoire to be regulated through dynamic localization in distinct areas of the cell membrane. These proteases are proving to be key components of the cell machinery for regulating vascular permeability, generation of vasoactive peptides, receptor tyrosine kinase transactivation, extracellular matrix proteolysis, and angiogenesis. SUMMARY: A complex picture of the interdependence between membrane-anchored protease localization and function is emerging that may provide a mechanism for precise coordination of extracellular signals and intracellular responses through communication with the cytoskeleton and with cellular signaling molecules.

Lavoro scaricabile da Internet:

Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014 Dec;15(12):786-801.
The extracellular matrix (ECM) is a highly dynamic structure that is present in all tissues and continuously undergoes controlled remodelling. This process involves quantitative and qualitative changes in the ECM, mediated by specific enzymes that are responsible for ECM degradation, such as metalloproteinases. The ECM interacts with cells to regulate diverse functions, including proliferation, migration and differentiation. ECM remodelling is crucial for regulating the morphogenesis of the intestine and lungs, as well as of the mammary and submandibular glands. Dysregulation of ECM composition, structure, stiffness and abundance contributes to several pathological conditions, such as fibrosis and invasive cancer. A better understanding of how the ECM regulates organ structure and function and of how ECM remodelling affects disease progression will contribute to the development of new therapeutics.

Beginning of angiogenesis research (Judah Folkman, MD and Raghu Kalluri, PhD)

Learn Angiogenesis
Suggerimento lavori su angiogenesis da approfondire per tema esame:

Disponibile pdf:

1) Ricard-Blum S, Salza R.: Matricryptins and matrikines: biologically active fragments of the extracellular matrix. Exp Dermatol. 2014 Jul;23(7):457-63.

Numerous extracellular proteins and glycosaminoglycans (GAGs) undergo limited enzymatic cleavage resulting in the release of fragments exerting biological activities, which are usually different from those of the full-length molecules. In this review, we define matrikines and matricryptins, which are bioactive fragments released from the extracellular matrix proteins, proteoglycans and GAGs and report their major biological activities. These fragments regulate a number of physiopathological processes including angiogenesis, cancer, fibrosis, inflammation, neurodegenerative diseases and wound healing. The challenges to translate these fragments from molecules biologically active in vitro and in experimental models to potential drugs are discussed in the last part of the review.

2) Bix G, Iozzo RV. Matrix revolutions: "tails" of basement-membrane components with angiostatic functions. Trends Cell Biol. 2005 Jan;15(1):52-60.
Angiogenesis, the creation of neovasculature from native blood vessels, is a prerequisite for many physiological and pathological processes. Recently, C-terminal tail fragments of several basement-membrane proteins such as endostatin, tumstatin and endorepellin have been shown to inhibit angiogenesis. Although there seems to be little or no homology among them, a common theme is that these fragments modulate endothelial cells by distinct interactions with integrins and activate distinct intracellular signaling cascades that often lead to disruption of the actin cytoskeleton. In this article, we focus on recent advances regarding the mechanism of action of these angiostatic fragments and the emerging concept of similarities among them, with the underlying premise that appreciating these similarities might lead to improved therapeutics.

3) Ricard-Blum S, Ballut L. Matricryptins derived from collagens and proteoglycans. Front Biosci. 2011 Jan 1;16:674-97.

Controlled proteolysis of extracellular matrix components releases bioactive fragments or unmasks cryptic sites that play key roles in controlling various physio-pathological processes including angiogenesis, tissue remodeling, wound healing, inflammation, tumor growth, and metastasis. We review here the structure and mechanisms of release of i) the proteolytic fragments (matricryptins) cleaved from collagens, proteoglycans and glycosaminoglycans, and ii) the matricryptic sites existing in these molecules. The cell surface receptors and the signaling pathways they trigger to exert their biological activities is discussed with the major physio-pathological processes they control. Their involvement in autoimmune and inherited diseases is reported. Most matricryptins issued from collagens, proteoglycans and glycosaminoglycans exhibit anti-angiogenic and anti-tumor properties and their use as potential drugs and as potential disease markers is discussed. Perspectives for identifying the common structural features, if any, of the matricryptins and their use in combination with chemotherapy and radiotherapy in the treatment of cancer are presented.

4) Burgess JK, Weckmann M. Matrikines and the lungs. Pharmacol Ther. 2012 Jun;134(3):317-37.

The extracellular matrix is a complex network of fibrous and nonfibrous molecules that not only provide structure to the lung but also interact with and regulate the behaviour of the cells which it surrounds. Recently it has been recognised that components of the extracellular matrix proteins are released, often through the action of endogenous proteases, and these fragments are termed matrikines. Matrikines have biological activities, independent of their role within the extracellular matrix structure, which may play important roles in the lung in health and disease pathology. Integrins are the primary cell surface receptors, characterised to date, which are used by the matrikines to exert their effects on cells. However, evidence is emerging for the need for co-factors and other receptors for the matrikines to exert their effects on cells. The potential for matrikines, and peptides derived from these extracellular matrix protein fragments, as therapeutic agents has recently been recognised. The natural role of these matrikines (including inhibitors of angiogenesis and possibly inflammation) make them ideal targets to mimic as therapies. A number of these peptides have been taken forward into clinical trials. The focus of this review will be to summarise our current understanding of the role, and potential for highly relevant actions, of matrikines in lung health and disease.

5) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Carmeliet P(1), Jain RK. Nat Rev Drug Discov. 2011 Jun;10(6):417-27. doi: 10.1038/nrd3455.

Despite having an abundant number of vessels, tumours are usually hypoxic and nutrient-deprived because their vessels malfunction. Such abnormal milieu can
fuel disease progression and resistance to treatment. Traditional anti-angiogenesis strategies attempt to reduce the tumour vascular supply, but
their success is restricted by insufficient efficacy or development of resistance. Preclinical and initial clinical evidence reveal that normalization
of the vascular abnormalities is emerging as a complementary therapeutic paradigm for cancer and other vascular disorders, which affect more than half a billion
people worldwide. Here, we discuss the mechanisms, benefits, limitations and possible clinical translation of vessel normalization for cancer and other
angiogenic disorders.

6) Therapeutic application of anti-angiogenic nanomaterials in cancers. Mukherjee S(1), Patra CR(1).Nanoscale. 2016 Apr 12. [Epub ahead of print]

Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.

7) Bergers G, Benjamin LE.Tumorigenesis and the angiogenic switch. Nat Rev Cancer. 2003 Jun;3(6):401-10.

It has become evident that we cannot understand tumour growth without considering components of the stromal microenvironment, such as the vasculature. At the same time, the tumour phenotype determines the nature of the tumour vasculature. Much research is now devoted to determining the impact of angiogenesis on tumour development and progression, and the reciprocal influences of tumour products on the microvasculature. A more detailed understanding of the complex parameters that govern the interactions between the tumour and vascular compartments will help to improve anti-angiogenic strategies-- not only for cancer treatment, but also for preventing recurrence.

8) Ricard-Blum S, Vallet SD. Proteases decode the extracellular matrix cryptome. Biochimie. 2016 Mar;122:300-13.
The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets.

9) Per ruolo di MMPs nella gravidanza: Sharma S, Godbole G, Modi D. Decidual Control of Trophoblast Invasion. Am J Reprod Immunol. 2016 Mar;75(3):341-50. doi: 10.1111/aji.12466. Epub 2016 Jan 12.
At the time of implantation, the trophoblast cells of the embryo adhere and then invade into the maternal endometrium and eventually establish placentation. The endometrium at the same time undergoes decidualization, which is essential for successful pregnancy. While the NK cells of the decidua have been implicated to play a key role in trophoblast invasion, few evidence are now available to demonstrate a pro-invasive property of decidual stromal cells. Secretions from decidualized endometrial stromal cells promote invasion of primary trophoblasts and model cell lines by activating proteases and altering expression of adhesion-related molecules. The decidual secretions contain high amounts of pro-invasive factors that include IL-1ß, IL-5, IL-6, IL-7, IL-8, IL-9, IL-13, IL-15, Eotaxin CCL11, IP-10 and RANTES, and anti-invasive factors IL-10, IL-12 and VEGF. It appears that these decidual factors promote invasion by regulating the protease pathways and integrin expression utilizing the STAT pathways in the trophoblast cells. At the same time the decidua also seem to secrete some anti-invasive factors that are antagonist to the matrix metalloproteinases and/or are activators of tissue inhibitors of metalloproteinases. This might be essential to neutralize the effects of the invasion-promoting factors and restrain over-invasion. It is tempting to propose that during the course of pregnancy, the decidua must balance the production of these pro and anti-invasive molecules and such harmonizing production would allow a timely and regulated invasion.

 



Il Corso è terminato. Mi auguro di essere riuscita a rendere affascinanti gli argomenti trattati e di avervi invogliato ad approfondirli ulteriormente.

 

APPELLI DI ESAME AA 2015-2016

Giorno, ore
Aula
Note
 
5 Febbraio 2016 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
22 Febbraio 2016 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani
18 Marzo 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
15 Aprile 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
27 Maggio 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  

ATTENZIONE

6 Giugno 2016, ore 14.30

Studio prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)  
9 Giugno 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
23 Giugno 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
6 Luglio 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
22 Luglio 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
8 Settembre 2016. ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
28 Settembre 2016, ore 10 Laboratorio Didattico (ex Aula T133 di Esercitazioni di Anatomia Comparata), piano 0, Palazzo Botta-Spallanzani  
Giovedì 27 Ottobre, ore 10 Studio Prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)  
Venerdì 25 Novembre, ore 10 Studio Prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)  
Venerdì 16 Dicembre 2016. ore 10 Studio Prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)  
18 Gennaio 2017, ore 10 Studio Prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)  
21 Febbraio 2017, ore 10 Studio Prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)  
Lunedì 15 Maggio 2017, ore 10
Studio prof. Freitas (T-89), 1° Piano, Palazzo Botta-Spallanzani (in fondo allo stanzone)
 

COMMISSIONE:
Presidente: Prof.ssa M. Isabel B.S. Freitas (PA)
Componenti:  Dr. Vittorio Bertone (RI), Dott.ssa Gloria Milanesi (CM), Dott.ssa Eleonora Tarantola (CM), dott.ssa Eleonora Boncompagni (CM)
PA: Professore associato
R: Ricercatore
CM: Cultore di materia