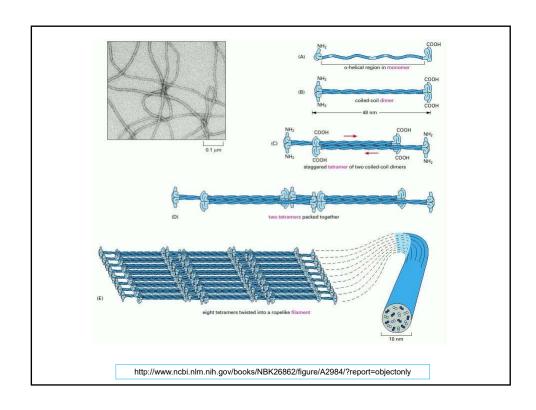


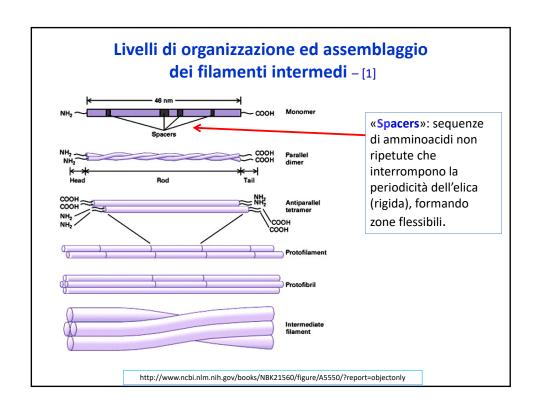
- ♣ I filamenti intermedi sono polimeri citoscheletrici codificati da una grande famiglia di geni espressi in modo differenziale che forniscono un sostegno strutturale cruciale al citoplasma e al nucleo degli eucarioti superiori.
- Perturbazioni della loro funzione sono alla base di diverse patologie determinate geneticamente in cui le cellule fragilizzate non sono in grado di reggere agli stress meccanici e non-meccanici.
- ♣ Studi recenti chiariscono come il sostegno strutturale sia modulato per affrontare le necessità mutevoli delle cellule e rivelano un nuovo ruolo tramite il quale i filamenti intermedi influenzano la crescita e la morte cellulare mediante interazioni dinamiche con proteine nonstrutturali.

Coulombe PA, Wong P. Cytoplasmic intermediate filaments revealed as **dynamic and multipurpose scaffolds**. Nat Cell Biol. 6: 699-706, 2004.

Adattato da Newsletter della Biomeda, Summer 1996, Volume 1, Issue 1

- ♣I filamenti intermedi (FI) sono i principali costituenti del citoscheletro e dell'interfaccia col nucleo delle cellule animali.
- **♣**Svolgono ruoli di importanza fondamentale **nell'organizzazione degli elementi strutturali**.
- ‡A seconda del *tipo cellulare*, *proteine morfologicamente simili ma distinte biochimicamente* formano filamenti ad elevata viscoelasticità che svolgono molteplici funzioni nanomeccaniche.
- **↓**Oltre ad un ruolo principale nella plasticità cellulare e nell'ammortizzazione degli stress cellulari, alterazioni geniche recentemente identificate hanno elucidato che le alterazioni strutturali degli IFs possono influenzare il loro coinvolgimento sia nelle vie di segnalamento che nelle reti di geni regolatori.


Herrmann H, Strelkov SV, Burkhard P, Aebi U. Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest. 119:1772-1783, 2009.


FILAMENTI INTERMEDI - [1]


- Sono biochimicamente molto più eterogenei dei microfilamenti e dei microtubuli
- ♣ Hanno grande forze tensile; es:
 - Peli e unghie: consistono principalmente di filamenti intermedi delle cellule morte.
- ♣ 8 10 nm di diametro.
- Insolubili in soluzioni concentrate di sali e detergenti non ionici.
- Si possono sciogliere con urea (potente denaturante delle proteine).

FILAMENTI INTERMEDI – [2]

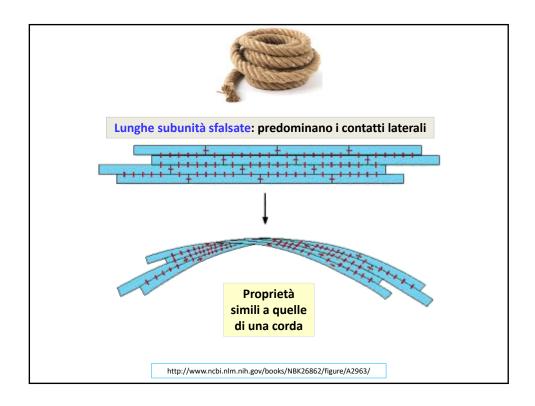
- NON hanno una polarità intrinseca come i microfilamenti e i microtubuli, e le loro unità costituenti NON si legano ad un nucleotide.
- Dato che non hanno polarità intrinseca non si conoscono proteine motori che li usino come rotaie
- Nonostante siano dinamici in termini di scambio di subunità, sono molto più stabili dei microfilamenti e i microtubuli in quanto la velocità di scambio è molto più lenta.
- NON si trovano in tutti gli eucarioti:
 - I funghi e le piante **non** hanno filamenti intermedi
- Gli insetti hanno soltanto una classe, rappresentata da due geni che esprimono le lamine A/C e B (FI che sorreggono l'involucro nucleare).

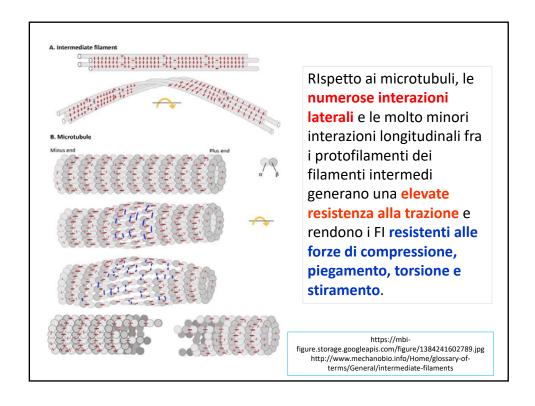
FI: Struttura -[1]

- Ogni isoforma delle proteine dei FI ha una sequenza amminoacidica caratteristica, ma fra i domini N- e C- terminali tutti hanno un dominio a bastoncello con dimensione variabile.
- \clubsuit Il bastoncello è un "coiled-coil" parallelo di due α-eliche, di solito lungo circa 47 nm.
- ♣ Come gli altri "coiled-coils", i domini a bastoncello dei FI hanno una ripetizione di sette AA, in cui il primo e quarto residui forniscono una riga continua di interazioni idrofobiche lungo l'interfaccia fra le due eliche.

FI: Struttura - [2]

- Zone di carica positiva e negativa si alternano lungo il bastocello.
 - Quando sfalsate in modo corretto, queste zone forniscono legami elettrostatici complementari per l'assemblaggio dei filamenti.
- Circa 20 residui altamente conservati ad ogni estremità del bastoncello sono essenziali per l'allungamento del filamento mediante interazioni testa-coda fra molecole dimeriche.
- Studi con proteine mutanti suggeriscono che queste zone del bastoncello contribuiscono alle associazioni laterali all'interno dei filamenti.
- Sequenze amminoacidiche indicano la presenza di tre interruzioni nel "coiled-coil"

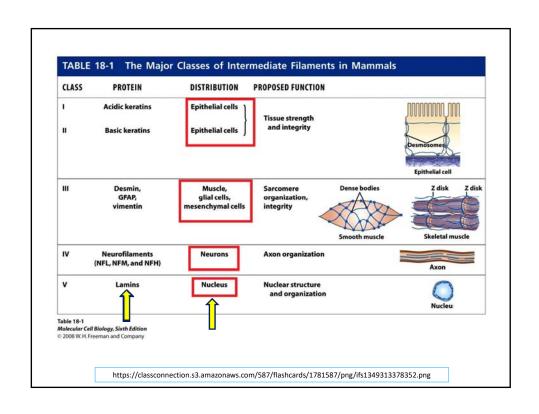

Livelli di organizzazione ed assemblaggio dei filamenti intermedi – [2]

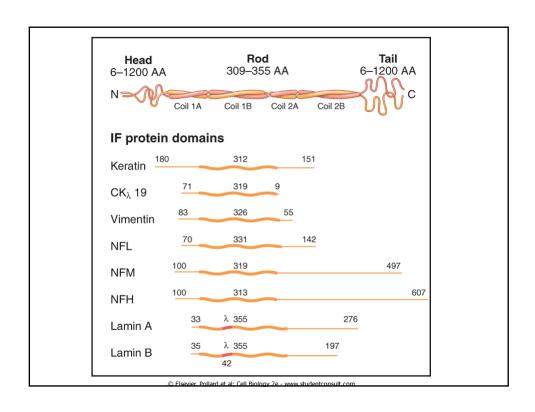

- Le proteine dei filamenti intermedi (IF) formano omo- ed eterodimeri con un dominio altamente conservato ad alfa-elica e code e teste non elicoidali, che hanno dimensione e sequenza di amminoacidi variabili.
 - Il dominio "core" centrale contiene tre elementi spaziatori non elicoidali.
- Un tetramero si forma mediante aggregazione sfalsata, antiparallela di due dimeri identici.
 - I tetrameri si aggregano coda contro coda, formando un protofilamento;
 - Successivamente, copie di protofilamenti si associano lateralemente formano una protofibrilla. L'associazione laterale di quattro protofibrille forma un cilindro con 10 nm di spessore.

Filamenti intermedi e resistenza alla trazione

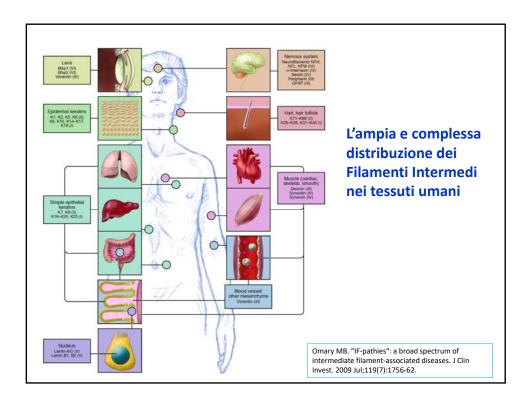
- **↓** I FI hanno un'elevata resistenza alla trazione, forze di compressione, torsione e al piegamento.
- La natura elastica dei FI è dovuta all'assemblaggio sfalsato delle subunità e alto grado di interazioni laterali rispetto a quelle longitudinali all'interno dei FI.

http://www.mechanobio.info/Home/glossary-of-terms/General/intermediate-filaments


ETEROGENEITÀ MOLECOLARE DEI FILAMENTI INTERMEDI – [1]


- ♣ Mentre i filamenti di actina e i microtubuli sono polimeri di un unico tipo di proteina (actina e tubulina, rispettivamente), i filamenti intermedi (FI) sono composti da una gran varietà di proteine che sono espresse da tipi cellulari diversi.
- ♣ Sono stati identificati più di 65 proteine diverse di FI, che sono state classificate in sei gruppi in base alle somiglianze di sequenze amminoacidiche.

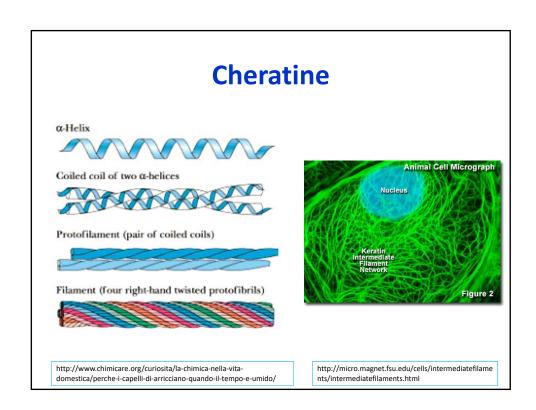
ETEROGENEITÀ MOLECOLARE DEI FILAMENTI INTERMEDI – [2]

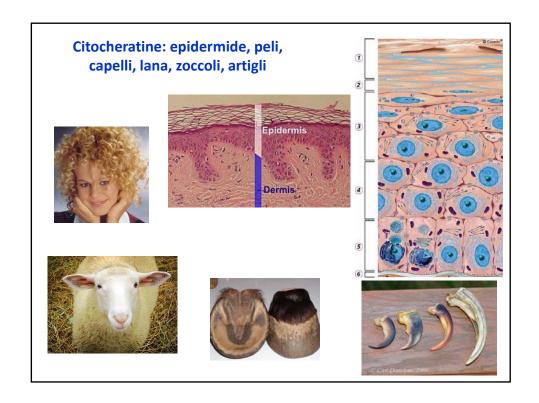

Tipo	Proteina	Dimensione (kD)	Sito di espressione
I	Cheratine acide (~ 15 proteine)	40-60	Cellule epiteliali
II	Cheratine neutre o basiche (~ 15 proteine)	50-70	Cellule epiteliali
III	Vimentina	54	Fibroblasti. leucociti e altri tipi cellulari
	Desmina	53	Cellule muscolari
	Glial Fibrillary Acidic Protein (GFAP)	51	Cellule gliali
	Periferina	57	Neuroni periferici
IV	Proteine dei neurofilamenti		·
	NF-L	67	Neuroni
	NF-M	150	Neuroni
	NF-H	200	Neuroni
	α-internexina	66	Neuroni
٧	Lamine nucleari	60-75	Lamina nucleare di tutti i tipi cellulari
VI	Nestina	200	Cellule staminali, sopratutto del SNC
Le nest	ine sono talvolta classificate come FI di ti	po IV piuttosto che	e di tipo VI

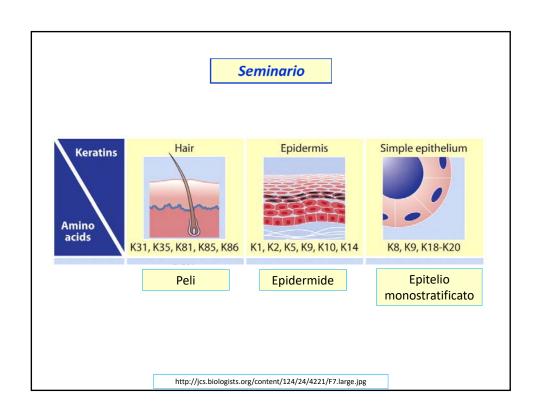
Adattato da: Cooper GM & Hausman RE: The Cell: A Molecular Approach", 4th ed, ASM Press, Sinauer Associates

Member name	Sequence homology class	cDNA-deduced mass in kDa	Typical occurrence in mammals/notable features
Assembly group 1			Cytoplasmic
Acidic cytokeratins* CK9-20	1	40-64	All epithelia; heteropolymer with a type II CK
Basic cytokeratins* CK1-8	II	52-68	All epithelia; heteropolymer with a type I CK
Assembly group 2			Cytoplasmic
Vimentin	III	55	Mesenchymal cells
Desmin	III	53	Muscle cells
Glial fibrillary acidic protein (GFAP)	III	50-52	Glia cells, astrocytes, stellate cells of liver
Peripherin	III	54	Diverse neuronal cells
Synemin	[III/V]	182†	Muscle cells; copolymer with desmin and/or vimentin
Paranemin	IV/I	178	Muscle cells; copolymer with desmin and/or vimentin
Nestin	[III/IV]‡	240	Neuroepithelial stem cells, muscle cells; copolymer with vimentin and/or α-internexin
α-Internexin	IV	56	Neurons
Neurofilament triplet proteins	IV		Neurons
NF-L		68	
NF-M		110	Neurons; copolymer with NF-L
NF-H		130	Neurons; copolymer with NF-L
Assembly group 3			Nuclear
Lamins			
type A/C§	V	62-72	Most differentiated cells
type B		65-68	All cell types
Orphan assembly group			Cytoplasmic
Phakinin	(1?)#	46	Lens; copolymer with filensin
Filensin	(IV.5)#	83	Lens; copolymer with phakinin

ETEROGENEITÀ MOLECOLARE DEI FILAMENTI INTERMEDI – [3]


- ↓ I tipi I e II consistono in due gruppi di cheratine, ciascuno consistente di circa 15 proteine diverse, che sono espresse nelle cellule epiteliali.
 - Ogni tipo di cellula epiteliale sintetizza almeno un tipo di cheratina I (acide) e un tipo di tipo II (basiche, neutre), che copolimerizzano per formare filamenti.
 - Alcuni tipi di cheratine di tipo I e II (dette cheratine dure) sono usate per produrre strutture dure quali i capelli, le unghie e le corna.
 - Altri tipi di cheratina (cheratine molli, citocheratine) sono abbondanti nel citoplasma delle cellule epiteliali; nei vari tipi di cellule epiteliali sono espresse combinazioni diverse.


Adattato da: Cooper GM & Hausman RE: The Cell: A Molecular Approach", 4th ed, ASM Press, Sinauer Associates


CITOCHERATINE

- Questo è il primo tipo di filamento intermedio a comparire durante la segmentazione dello zigote ed è già rivelabile allo stadio di 8 cellule.
- Più tardi, durante l'embriogenesi, la famiglia delle citocheratine è presente nelle cellule epiteliali.
- ♣ Gli epiteli semplici, monostratificati o le cellule epiteliali in rapida divisione contengono le citocheratine di PM più basso, mentre gli epiteli complessi, con cellule altamente differenziate contengono citocheratine di dimensioni maggiori, con terminali aminico e carbossilico idrofobici. Questi interagiscono con una proteina citoplasmatica strettamente associata, la filaggrina, per formare un complesso insolubile ma molto malleabile che fornisce la barriera protettiva della pelle.
- Le citocheratine sono anche associate ai desmosomi, giunzioni di membrana che collegano funzionalmente il citoscheletro dei filamenti intermedi delle le cellule epiteliali.

Adattato da Smith and Wood: Cell Biology, Chapman & Hall, London, 1992

Seminario

	Type I		Type II	
Keratin types	new	former	new	former
,,,	name	name	name	name
Epithelial keratins	К9	К9	K1	K1
	K10	K10	K2	K2
	K12	K12	кз	кз
	K13	K13	K4	K4
	K14	K14	K5	K5
	K15	K15	K6a	K6a
	K16	K16	K6b	кбь
	K17	K17	K6c	K6e/h
	K18	K18	K7	K7
	K19	K19	K8	к8
	K20	K20	K76	K2p
	K23*	K23	K77	K1b
	K24*	K24	K78*	K5b
			K79*	K6I
	1		K80*	Kb20
Hair follicle-specific epithelial	K25	K25irs1	K71	K6irs1
keratins (root sheath)	K26	K25irs2	K72	K6irs2
	K27	K25irs3	K73	K6irs3
	K28	K25irs4	K74	K6irs4
			K75	K6hf
Hair keratins	K31	Ha1	K81	Hb1
	K32	Ha2	K82	Hb2
	K33a	Ha3-I	K83	Hb3
	кззь	Ha3-II	K84	Hb4
	K34	Ha4	K85	Hb5
	K35	Ha5	K86	Hb6
	K36	Ha6	I	
	K37	Ha7	I	
	K38	Ha8	I	
	K39	Ka35	I	1
	K40	Ka36	I	1

^{*}Expression pattern still unknown, only gene information available

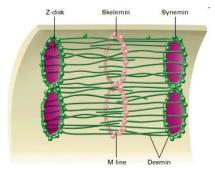
Tabella 2.1: La nuova nomenclatura delle cheratine umane. (Schweizer et al. 2006)

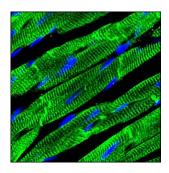
NEUROFILAMENTI

- Queste tre proteine, NF-L, NF-M e NF-H sono sintetizzate nei neuroni.
- Non sono distribuite in modo uguale:
 - I corpi cellulari contengono soprattutto NF-L e NF-H.
 - Gli assoni esprimono preferenzialmente NF-M e NF-H
- Hanno residui carbossilici altamente carichi.

VIMENTINA

- Espressa dai tessuti mesenchimali (connettivali), tipica delle cellule primitive.
- Le cellule in coltura ritornano ad esprimere vimentina anche se questo non è il loro filamento intermedio del tessuto maturo, forse come risultato della stimolazione a migrare e a dividersi rapidamente.

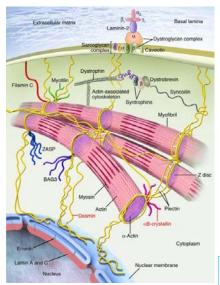

Adattato da Smith and Wood: Cell Biology, Chapman & Hall, London, 1992


DESMINA

- Questa proteina è espressa sopratutto dalle cellule muscolari scheletriche, aumentando negli stadi più tardivi di differenziamento, quando l'espressione della vimentina cessa.
- ♣ La desmina e la vimentina sembrano aiutare i microfilamente ad allinearsi in registro nelle fibre muscolari scheletriche ed entrambe rimangono come componenti minori nel muscolo scheletrico maturo.
- La desmina è presente anche nella muscolatura liscia e in cellule non muscolari con attività contrattile, come i periciti, le cellule stellate del fegato, le cellule mio-epiteliali e i podociti del rene.
- E' anche presente in altre cellule non muscolari come le cellule endoteliali.
- Quindi, l'espressione di desmina non è interamente muscolospecifica.

Adattato da Smith and Wood: Cell Biology, Chapman & Hall, London, 1992

Desmina nel muscolo


http://www.cellsignal.com/products/image s/4024_iff_md_071214.jpg

Questi filamenti intermediari di tipi III avvolgono il disco Z e stabiliscono contatti ulteriori con i circostanti dischi Z della stessa miofibrilla. L'allineamento dei filamenti di desmina con il sarcomero del muscolo è mantenuto da numerose proteine associate ai filamenti intermedi (IFAPs, "intermediate filaments-associated proteins"), che includono la schelemina nella linea M e la sinemina nel disco Z.

http://www.ncbi.nlm.nih.gov/books/NBK21560/figure/A5561/

Seminario

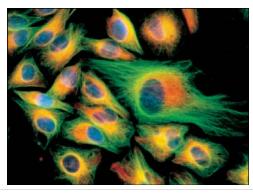
Architettura molecolare di un miocito, in cui sono evidenziate le proteine coinvolte nelle miopatie scheletriche e cardiache


La desmina è la principale proteina dei Fl del muscolo. Interagisce con altre proteine per sostenere le miofibrille a livello dei dischi Z e forma una rete continua di citoscheletro che mantiene i rapporti spaziali fra l'apparato contrattile e gli altri elementi strutturali della cellula. La desmina mantiene l'integrità cellulare, la trasmissione di forza, e il segnalamento meccanochimico.

Mutazioni in altre proteine sarcomeriche e citoscheletriche (plectina, miotilina, filamina, αB -cristallina, αZ band alternatively spliced PDZ-motif protein [ZASP]», e $\alpha CL2$ -associated athanogene 3 [BAG3]» provocano disfunzioni neuromuscolari.)

Tragedy in a heartbeat: malfunctioning desmin causes skeletal and cardiac muscle disease . Lev G. Goldfarb, Marinos C. Dalakas *J Clin Invest*. 2009; 119(7):1806–1813

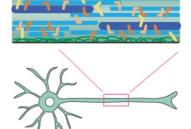
Seminario


Vimentina: cellule di origine mesenchimale

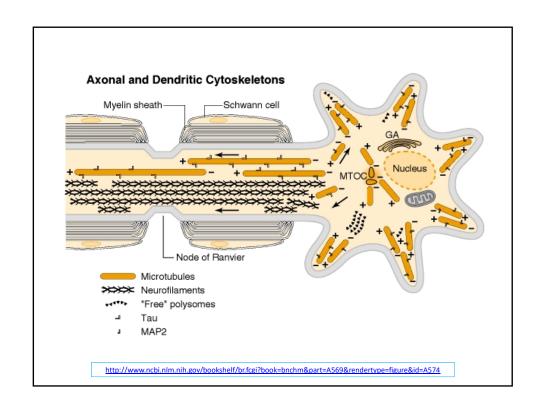
La rete di filamenti intermedi di vimentina (rosso) si estende verso i lamellipodi dove i tetrameri co-localizzano con la proteina fimbrina (verde), che forma fasci di actina. Questi foci fluorescenti sono adesioni focali specializzate che si trovano negli osteoclasti e macrofagi, chiamati podosomi.

Correia I, Chu D, Chou YH, Goldman RD, Matsudaira P. Integrating the actin and vimentin cytoskeletons. adhesion-dependent formation of fimbrin-vimentin complexes in macrophages. J Cell Biol. 1999 Aug 23;146(4):831-42.

Vimentina: cellule di origine mesenchimale


Cultura cellulare mista di linea cellulare di melanoma amelanotico e di carcinoma epidermoide, fatte crescere su vetrino copri-oggetto, fissate e fluorocromizzate con anticorpo monoclonale anti pan-citocheratine (fluorocromo verde), anticorpo monoclonale **anti-vimentina** (fluorocromo **rosso**) e fluorocromo nucleare Hoechst No. 3325 (emissione azzurra).

http://www.genetex.com/pan-Cytokeratin-antibody-PCK-26-GTX26401.html#0


Seminario

Ruolo dei filamenti intermedi citoplasmatici nella citoarchittetura

Cytoarchitecture

Nei motoneuroni, la crescita radiale dei processi assonali richiede la loro interazione con neurofilamenti (blu chiaro) in modo da trovare la corretta stechiometria fra le subunità di PM "leggero" (NF-L), medio (NF-M) e "pesante" (NF-H). I grandi domini della coda C-terminale delle subunità NF-H (rosso) e NF-M (arancione) sono iperfosforilati e si proiettano al di fuori della zona centrale del filamento, così determinando la spaziatura fra I filamenti e il calibro dell'assone. Gli abbondanti neurofilamenti interagiscono con i microtubuli, meno abbondanti (blu scuro) e con I filamenti di actina subcorticali (verde scuro) mediante proteine linker del citoscheletro, quali la plectina e la BPAG1 (giallo).

Intermediate Filament (IF) Proteins of the Nervous System

<u>IF</u> type	Subunit	Cell type
Type III	Vimentin	Neural and glial precursors
	GFAP	Astrocytes, some Schwann cells
	Peripherin	Subset of neurons, particularly in PNS, may coassemble with NFH/NFM/NFL
	Desmin	Smooth muscle cells in vasculature
Type IV	NFH	Most neurons, most abundant in large neurons
	NFM	
	NFL	
	a-Internexin	Subset of neurons, particularly parallel fibers in cerebellum, may also coassemble with NFH/NFM/NFL
Type IV?	Nestin	Neuroectodermal precursors in developing brain

GFAP, glial fibrillary acidic protein; NFH, NFM and NFL, neurofilaments of high, medium and low molecular weight, respectively.

 $\underline{\text{http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=bnchm\&part=A569\&rendertype=table\&id=A578}$

Neurofilamenti

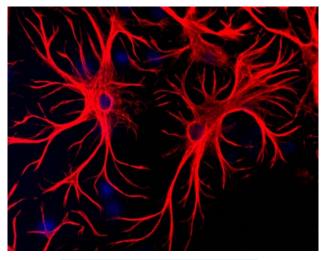
http://www.encorbio.com/cpolyclonal/CPCA-NF-H.htm

Seminario

Didascalia della figura sul citoscheletro degli assoni e dei dendriti (1)

- ♣ I citoscheletri degli assoni e dei dendriti differiscono sia in composizione che in organizzazione. Le principali differenze sono illustrate diagrammaticamente in questa Figura. Con una eccezione, tutte le proteine citoscheletriche sono sintetizzate su polisomi liberi nel corpo cellulare, e, successivamente, trasportate ai loro differenti compartimenti cellulari. L'eccezione è la MAP2, che è la principale proteina associata ai microtubuli dei dendriti. Mentre una certa parte della MAP2 è sintetizzata nel corpo cellulare, il mRNA per la MAP2 è specificamentente arricchito nel compartimento dendritico e si ritiene che una frazione significativa sia sintetizzata in quel sito.
- ♣ Si crede che i microtubuli dei corpi cellulari, dei dendriti e degli assoni siano nucleati nel centro organizzatore dei microtubuli (MTOC), e quindi rilasciati e consegnati ai dendriti oppure all'assone. Nel dendrite, i microtubuli spesso hanno polarità miste con presenza sia di estremità "meno" che "più" nella parte distale rispetto al corpo cellulare. La conseguenza funzionale di tale organizzazione è incerta ma potrebbe aiutare a spiegare come mai i dendriti assumono una forma affusolata mentre si allontano dal corpo cellulare.

 $\underline{http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=bnchm\&part=A569\&rendertype=figure\&id=A574$


Seminario

Didascalia della figura sul citoscheletro degli assoni e dei dendriti (2)

- Vice-versa, tutti i microtubuli degli assoni sono orientati con l'estremità "più" in posizione distale rispetto al corpo cellulare ed esibiscono una distribuzione uniforme lungo l'assone.
- Nonostante una certa quantità di proteina tau possa essere identificata nei corpo cellulari e nei dendriti, i microtubuli assonali sono arriccchiti in tau e la tau assonale è fosforilata in modo diverso. La MAP2 sembra essere assente dall'assone. I neurofilamenti sono in gran parte esclusi dai compartimenti dendritici ma sono abbondanti negli assoni di grandi dimensioni. Il distanziamento dei neurofilamenti è sensibile al livello di fosforilazione. Sia i microtubuli che i neurofilamenti si fermano ed iniziano nell'assone piuttosto e non proseguono nel corpo cellulare. I microfilamenti hanno un'organizzazione più dispersa e possono essere di difficile visualizzazione nel neurone maturo. Essi sono principalmente abbondanti vicino alla membrana plasmatica ma sono anche molto abbondanti nei terminali pre-sinaptici e nelle spine dendritiche. GA: apparato di Golgi.

 $\underline{http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=bnchm\&part=A569\&rendertype=figure\&id=A574$

Glial Fibrillary Acidic Protein (GFAP)

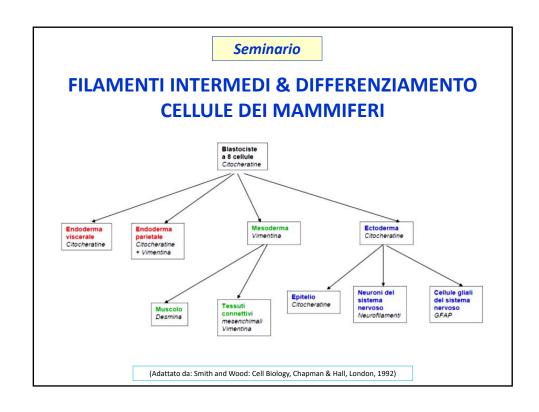
http://encorbio.com/cpolyclonal/CPCA-GFAP.htm

DIAGNOSI DEI TUMORI UMANI IN BASE ALLA LORO ESPRESSIONE DI FILAMENTI INTERMEDI – [1]

- Normalmente quando i pazienti con tumori sono trattati con radiazione o farmaci, la decisione sul tipo di trattamento è basata sulla diagnostica del tumore.
 - Per esempio, alcuni tipi tumorali respondono al trattamento con la radizione mentre altri sono radio-resistenti.
- Man mano che i tumori crescono, le caratteristiche strutturali del tessuto normale scompaiono e le singole cellule spesso perdono le loro carateristiche proteine di membrana, il che rende la loro identificazione molto difficile.
- ♣ Tuttavia, tumori di origine sconosciuta possono essere diagnosticati mediante l'identificazione dei loro filamenti intermedi con anticorpi specifici. Questo perchè l'espressione dei filamenti intermedi è cellulaspecifica, ossia, ogni proteina di filamento intermedio è associata ad un tipo cellulare particolare.
 - Ad esempio, i tumori che esprimono citocheratine possono essere classificati come carcinomi (di origine epiteliale) e distinti dai sarcomi (di origine mesenchimale) che esprimono vimentina.

(Adattato da: Smith and Wood: Cell Biology, Chapman & Hall, London, 1992)

Seminario


DIAGNOSI DEI TUMORI UMANI IN BASE ALLA LORO ESPRESSIONE DI FILAMENTI INTERMEDI – [2]

- Il successo di questo metodo dipende moltissimo dall'assoluta specificità dell'anticorpo per un determinato tipo di filamento intermedio.
- ♣ Un altro fattore critico per la diagnostica è che le cellule tumorali non sempre ubidiscono alle "regole" dell'espressione tissutale. E' stato dibattuto vivacemente ed ora accettato che, al contrario delle cellule normali non cancerose, le cellule tumorali possono coesprimere due tipi di filamenti intermedi, ad esempio citocheratine e vimentina. Tuttavia, queste non co-polimerizzano in filamenti, ma esistono come reti separate.
- Se le limitazioni di cui sopra sono tenute in considerazione, l'espressione dei filamenti intermdi dai tumori rimane un metodo per la loro diagnosi.

(Adattato da: Smith and Wood: Cell Biology, Chapman & Hall, London, 1992)

	Type of Filament	Tissue Origin	Tumor Type
	Keratin,Cytokeratin	Epithelial Cells	Carcinomas(Squamous and Adeno)
			Synovial and epithelial sarcomas
			Non-Seminoma Germ Cell Tumors
ario			Some neuroendocrine carcinoma
Seminario			Choroid Plexus Tumors
Se.			Some leiomyomas
	Vimentin	Mesenchymal Cells	Sarcomas (all types)
		Macrophages	Malignant Fibrous Histiocytoma Melanoma
		Endothelial Cells	8 %
Caratteristiche			Seminoma
			Schwannoma, meningioma
immunoistochimiche			Occasionally in some adenoca
dei tumori – [1]	Desmin	Muscle Cells	Skeletal, smooth, or cardiac muscle sarcomas
	Glial fibrillary acidic protein	Glial Cells	Astrocytomas, gliomas
	(GFAP)		Choroid plexus tumors, some oligodendrogliomas, Schwannomas, neurofibromas, some salivary gland mixed tumors
	Neurofilament	Neurons or neural crest	Neuron-derived CNS tumors
		70.000	Neural crest-origin tumors:
			Neuroblastoma, retinoblastoma, medullablastoma

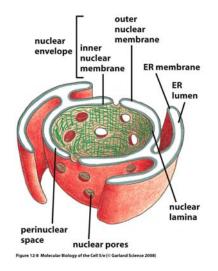
Table I. Types of Intermediate Filament Type I and II: Acid and basic keratin Type III: • Vimentin • Desmin • Glial fibrillary acidic protein • Peripherin Type IV: Neurofilaments Type V: Lamin A, B,C Type VI: Nestin Lamine Lamina nucleare

Lamina nucleare - [1]

- La membrane interna dell'involucro nucleare si trova vicino ad uno strato di filamenti sottili che circonda il nucleo ovunque tranne che all'altezza dei pori nucleari. Questi possono anche fungere da filamenti di stabilizzazione. Questa struttura è detta lamina nucleare. Ha le seguenti caratteristiche strutturali e funzionali:
 - Consiste di "filamenti intermedi ", di spessore 30-100 nm.
 - Questi filamenti intermedi sono polimeri di lamine, con pesi molecolare 60-75 kD.
 - Le lamine di tipo-A si trovano all'interno, verso il nucleoplasma.
 - Le lamine di tipo B si trovano vicino alla membrana nucleare (interna) e possono legarsi a proteine integrali all'interno della membrana.
 - Le lamine possono essere coinvolte nell'organizzazione strutturale del nucleo.

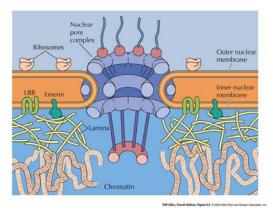
Lamina nucleare – [2]

- Le lamine possono giocare un ruolo nell'assemblaggio e disassemblaggio prima e dopo la mitosi.
 - La loro fosforilazione provoca il disassemblaggio della lamina e provoca la disgregazione dell'involucro nucleare in vescicole.
 - La defosforilazione rovescia questo processo e permette al nucleo di riformarsi.
- Se si iniettano anticorpi contro le lamine nelle cellule, il nucleo non si può riformare dopo la divisione. Quindi le lamine sono essenziali per il riassemblaggio.


N.B. Importante anche per capitolo NUCLEO

Involucro nucleare -[1]

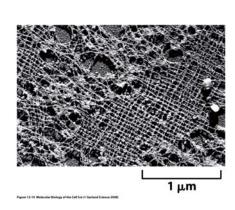
- La scorsa decade ha visto un complete ripensamento della tradizionale visione dell'involucro nucleare come essendo soltanto un involucro passivo per i cromosomi.
- ♣ La convergenza di diverse linee di ricerca di base e clinica ha rivelato ruoli addizionali sia nel segnalamento che nella progressione mitotica.
- Sta diventando evidente che l'involucro nucleare definisce non solo l'organizzazione nucleare ma anche quella del citoscheletro e in questo modo, integra sia l'archiettetura nucleare che quella citoplasmatica.


(Stewart et al., Science, 2007)

N.B. Importante anche per capitolo NUCLEO Involucro Nucleare – [2]

L'involucro nucleare, formato da due membrane, è penetrate dai pori nucleari ed è continuo con il reticolo endoplasmatico. I ribosomi, che sono legati alla superficie citosolica dela membrane del RE e alla membrana nucleare esterna, non sono evidenziati

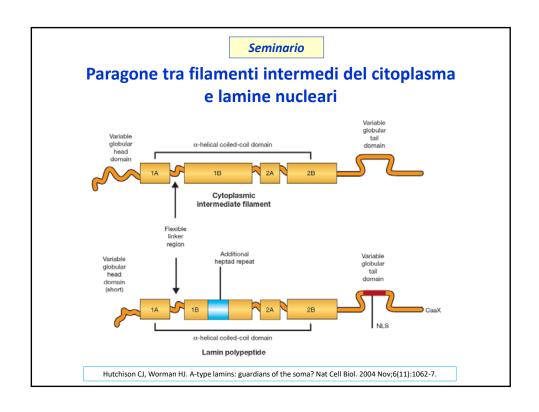
N.B. Importante anche per capitolo NUCLEO Lamina nucleare

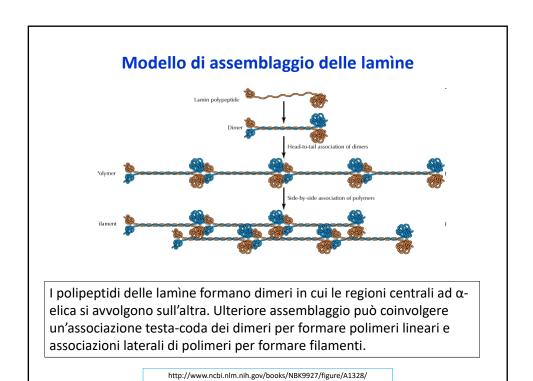


La *membrana nucleare interna* contiene diverse proteine integrali, tra cui l'emerina e il recettore per la lamina B (LBR) che interagiscono con le lamine nucleari. Le *lamine* interagiscono inoltre con la *cromatina*

Lamina Nucleare

(Scanning Electron Microscopy)

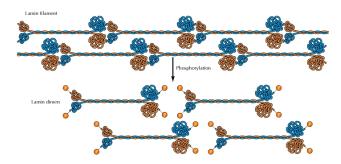




Lamina nucleare & Lamine

- La lamina nucleare è composta da un gruppo di proteine chiamate lamine A, B e C che hanno un PM di circa 60-70 kD.
 - Il gruppo A è espresso sopratutto nelle cellule differenziate
 - Le lamine B sono prodotte costitutivamente
 - Le lamine C sono identiche al tipo A, ad eccezione di un'estensione di ulteriori 90 AA, che deriva dallo splicing alternativo del prodotto genico nelle cellule dei mammiferi.
 - Si conoscono diversi tipi di lamine B, tutti prodotti di geni diversi.

(Smith & Wood, Cell Biology, Stanley Thornes, Cheltenham, 2nd edition, 1999).



Importante per capitolo DIVISIONE CELLULARE Importante per capitolo DIVISIONE CELLULARE Mentre la lamina nucleare si dissocia, l'involucro nucleare si frammenta in vescicole. Le lamìne di tipo B rimangono legate a

queste vescicole, mentre le lamine A e C vengono rilasciate come

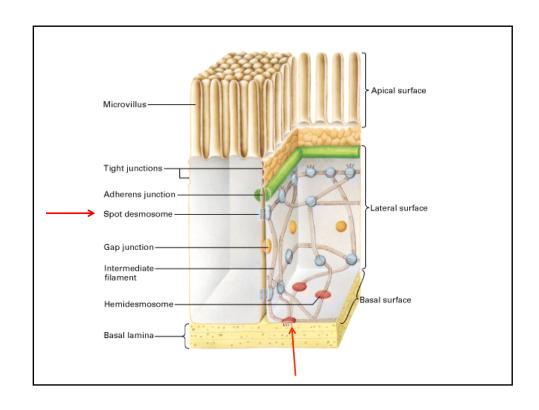
dimeri liberi.

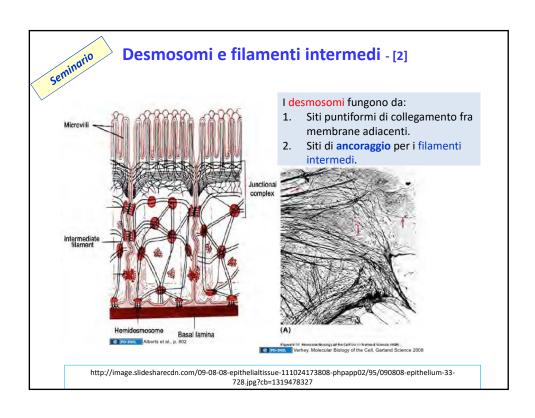
Dissoluzione della lamina nucleare (profase)

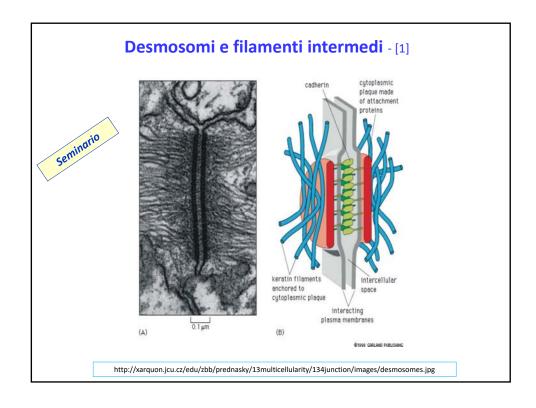
La lamina nucleare consiste in una rete di filamenti di lamine. Nella mitosi, la proteina chinasi Cdc2 ed altre proteina chinasi fosforilano le lamine, provocando la dissociazione dei filamenti in dimeri di lamina liberi.

http://www.ncbi.nlm.nih.gov/books/NBK9890/figure/A1377/?report=objectonly

LA FOSFORILAZIONE DELLE LAMINE PORTA ALLA DEGRADAZIONE DELL'INVOLUCRO NUCLEARE – [1]


- ↓ L'involucro nucleare è una estensione del reticolo endoplasmico ruvido circondata da una doppia membrana che contiene molti complessi dei pori nucleari.
- ♣ Il doppio strato lipidico della membrana interna è sostenuto dalla lamina nucleare, una rete di filamenti di lamine localizzato sotto la faccia interna dell'involucro nucleare.
- Le tre lamine nucleari (A, B, e C) presenti nelle cellule dei Vertebrati appartengono alla classe dei *filamenti intermedi* delle proteine del citoscheletro, che sono cruciali per sostenere le membrane cellulari.


LA FOSFORILAZIONE DELLE LAMINE PORTA ALLA DEGRADAZIONE DELL'INVOLUCRO NUCLEARE – [2]


- ↓Le lamine A e C, che sono codificate dalla stessa unità di trascrizione e prodotte per splicing alternativo di un singolo pre-mRNA, sono identiche, all'eccezione di una regione di 133 residui nel C- terminale della lamina A, che è assente nella lamina C.
- La lamina B, codificata da una unità trascrizionale diversa, viene modificata post-traduzionalmente mediante l'aggiunta di un gruppo isoprenilico idrofobico vicino al C- terminale.
 - Questo acido grasso viene incorporato nel foglietto interno del bilayer lipidico che forma la membrana nucleare interna, ancorando così la lamina nucleare alla membrana.
- floorTutte tre le lamìne nucleari formano dimeri che contengono una sezione centrale bastoncellare ad lpha-elica e domini di testa e di coda globulari; la polimerizzazione di questi dimeri mediante associazioni testa-a-testa e coda-a-coda genera i filamenti intermedi che compongono la lamina nucleare.

LA FOSFORILAZIONE DELLE LAMINE PORTA ALLA DEGRADAZIONE DELL'INVOLUCRO NUCLEARE – [3]

- ♣ All'inizio della mitosi, il Mitosis Promoting Factor (MPF) fosforila residui di serina specifici in tutte tre le lamine, provocando la depolimerizzazione dei filamenti intermedi della lamina. I dimeri fosforilati di lamine A e C vengono rilasciati in soluzione, mentre i dimeri fosforilati di lamine B rimangono associati alla membrana nucleare mediante la loro ancora isoprenilica.
- ♣ La depolimerizzazione delle lamine nucleari porta alla disintegrazione della rete della lamina nucleare e contribuisce alla rottura dell'involucro nucleare in piccole vescicole.

I filamenti intermedi si associano con altre proteine

- Le "Intermediate Filament Associated Proteins" (IFAPs):
 - · Aggiungono sostegno
 - · Collegano i FI alle altre strutture
- Esempi:
 - Plectina
 - ◆ Stabilisce legami crociati tra i FI e i microtubuli
 - Può anche legarsi alle Microtubule Associated Proteins (MTAPs) e a Microfilament Associated Proteins come la spettrina
 - Recettore per la Lamina B: collega la Lamina B alla membrana nucleare interna
 - . Anchirina: collega l'actina con gli IF alla base della cellula
 - Desmoplachina: collega i FI ai siti dei desmosomi e degli emidesmosomi

 $http://www.cytochemistry.net/Cell-biology/intermediate_filaments.htm$

Laminopatie - [1]

Table 1 Diseases caused by mutations in genes encoding lamins and associated proteins

Disease	Mutation	Major disease phenotypes
Striated muscle diseases		
Autosomal dominant EDMD	LMNA	Muscle weakness and wasting in scapulohumeral-peroneal distribution; early joint contractures; dilated cardiomyopathy
Autosomal recessive EDMD	LMNA	Muscle weakness and wasting in scapulo-humeral peroneal distribution; early joint contractures; dilated cardiomyopathy
Cardiomyopathy dilated 1A	LMNA	Cardiomyopathy with minimal to no skeletal muscle involvement
Limb-girdle muscular dystrophy type 1B	LMNA	Muscle weakness and wasting in limb-girdle distribution; dilated cardiomyopathy
Congenital-type muscular dystrophy	LMNA	Severe relatively diffuse myopathy presenting in first year of life; later cardiomyopathy
"Heart-hand" syndrome (with limb defects)	LMNA	Brachydactyly with mild hand and more severe foot involvement; cardiomyopathy
X-linked EDMD	EMD	Muscle weakness and wasting in scapulo-humeral peroneal distribution; early joint contractures; and dilated cardiomyopathy
Partial lipodystrophy syndromes		
FPLD2	LMNA	Loss of subcutaneous fat from the extremities at puberty, followed by increased fat accumulation in the face and neck; insulin resistance; diabetes mellitus; hyptertriglyceridemia; hepatic steatosis
Lipoatrophy with diabetes, hepatic steatosis, hypertrophic cardiomyopathy, and leukomelanodermic papules	LMNA	Generalized fat loss; insulin-resistant diabetes, hypertriglyceridemia, hepatic steatosis, hypertrophic cardiomyopathy; disseminated whitish papules
Mandibuloacral dysplasia (also has features of progeria)	LMNA	Hypoplastic mandible with dental crowding, acroosteolysis, stiff joints, atrophy of the skin over hands and feet, hypoplastic clavicles; "Andy Gump" appearance; persistently wide cranial sutures and multiple wormian bones; alopecia and short stature; and partial lipodystrophy
Acquired partial lipodystrophy (Barraquer-Simons syndrome)	LMNB2	Progressive, sporadic lipodystrophy with phenotype similar to FPLD2 (above)

Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest. 119:1825-1836, 2009.

Laminopatie – [2]

Progeria		
HGPS	LMNA	Children appear aged; retarded growth; micrognathia; reduced subcutaneous fat; alopecia; skin mottling; osteoporosis; and premature occlusive vascular disease
Atypical Werner syndrome	LMNA	Various combinations of signs and symptoms including an aged appearance; short stature; cataracts; sclerodermatous skin; osteoporosis; vascular disease
Mandibuloacral dysplasia (also has partial lipodystrophy)	LMNA	Partial lipodystrophy features along with osteolytic lesions in bone similar to those found in HGPS
RD	ZMPSTE24	Perinatal lethal; tight skin; loss of fat; prominent superficial vasculature; dysplastic clavicles: sparse hair: and multiple joint contractures
Peripheral neuropathy		
Charcot-Marie-Tooth disorder type 2B1	LMNA	Wasting and weakness of the lower distal limbs; and lower limb areflexia
Other diseases		
Adult-onset autosomal dominant leukodystrophy	LMNB1	Symmetrical widespread myelin loss in the CNS; phenotype similar to that of chronic progressive multiple sclerosis
Pelger-Huet anomaly (heterozygous)/ HEM-Greenberg skeletal dysplasia (homozygous)	LBR	Pelger-Huet anomaly: benign blood disorder of hyposegmented neutrophil nuclei; HEM: generally prenatal/perinatal lethal with fetal hydrops; short limbs; and abnormal chondroosseous calcification
Osteopoikilosis, Buschke-Ollendorff syndrome, nonsporadic melorheostosis	LEMD3	Hyperostosis of cortical bone; dermatofibrosis in Buschke-Ollendorff syndrome
Autosomal recessive cerebellar ataxia	SYNE1	Dysarthria and ataxia; dysmetria; and brisk lower-extremity tendon reflexes
DYT1 dystonia	TOR1A	Early onset symptoms variably including twisted postures; turning in of the foot or arm; muscle spasms; and jerking movements
Dilated cardiomyopathy	TMPO	Dilated cardiomyopathy

HEM, hydrops-ectopic calcification motheaten; *LBR*, lamin B receptor; *LEMD3*, LEM domain–containing protein 3, also known as MAN1; *SYNE1*, spectrin repeat containing nuclear envelope 1, also known as nesprin-1; *TOR1A*, torsin family 1, member A; TMPO, thymopoietin, also known as lamina-associated polypeptide 2.

Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest. 119:1825-1836, 2009.